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Abstract 

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Cerebral edema, the 
abnormal accumulation of fluid within the brain parenchyma, contributes to elevated intracranial pressure 
(ICP) and is a common life-threatening neurological complication following TBI. Unfortunately, 
neurosurgical approaches to alleviate increased ICP remain controversial and medical therapies are 
lacking due in part to the absence of viable drug targets. In the present study, genetic inhibition (P2X7-/- 
mice) of the purinergic P2x7 receptor attenuated the expression of the pro-inflammatory cytokine, 
interleukin-1β (IL-1β) and reduced cerebral edema following controlled cortical impact, as compared to 
wild-type mice. Similarly, brilliant blue G (BBG), a clinically non-toxic P2X7 inhibitor, inhibited IL-1β 
expression, limited edemic development, and improved neurobehavioral outcomes after TBI. The 
beneficial effects of BBG followed either prophylactic administration via the drinking water for one week 
prior to injury or via an intravenous bolus administration up to four hours after TBI, suggesting a clinically-
implementable therapeutic window. Notably, P2X7 localized within astrocytic end feet and administration 
of BBG decreased the expression of glial fibrillary acidic protein (GFAP), a reactive astrocyte marker, and 
attenuated the expression of aquaporin-4 (AQP4), an astrocytic water channel that promotes cellular 
edema. Together, these data implicate P2X7 as a novel therapeutic target to prevent secondary 
neurological injury after TBI, a finding that warrants further investigation
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TSNRP Research Priorities that Study or Project Addresses 
    Primary Priority  

Force Health Protection: 
 Fit and ready force 
 Deploy with and care for the warrior 
 Care for all entrusted to our care 

Nursing Competencies and 
Practice: 

 Patient outcomes 
 Quality and safety 
 Translate research into practice/evidence-based practice 
 Clinical excellence 
 Knowledge management 
 Education and training 

Leadership, Ethics, and 
Mentoring: 

 Health policy 
 Recruitment and retention 
 Preparing tomorrow’s leaders 
 Care of the caregiver 

Other:  
 Translating Knowledge & Research Findings into 

Practice  

in a Military Context 
 

  

 4 



Kimbler, Donald E  N10-P10 

 
Progress towards Achievement of Specific Aims of the Study or Project 

 
The overall objective of this research was to elucidate molecular and cellular 

mechanisms that promote cerebral edema, which may aid in the development of novel 

therapeutics to limit neurological dysfunction and reduce the incidence of 

neuropsychiatric sequelae following TBI.  The purinergic receptor P2X7 has been 

implicated in the processing and or release of interleukin 1 beta (IL-1β), the 

prototypical, pro-inflammatory cytokine.  A low affinity ATP activated receptor, P2X7 

plays a role in the innate immunity and upon activation causes trans-membrane ion 

fluxes and formation of membrane pores as well as its role in the production and release 

of IL-1β.  Others have shown a positive correlative role between IL-1β and the 

development of cerebral edema after brain injury.  To this end we proposed a 

mechanistic hypothesis to explain the etiology of cerebral edema, which if shown, could 

potentially lead to new therapies in TBI. 

 

Specific Aim 1:  To establish the cellular localization and temporal pattern of P2X7 

expression following TBI. 

Hypothesis.  The purinergic receptor, P2X7, is activated following TBI. 

Rationale.  The P2X7 receptor is reportedly distributed on cells of the immune system 

including macrophages, monocytes, lymphocytes, etc; additionally, the receptor is found 

in glia cells of the central and peripheral nervous system as well as spinal cord neurons 

(Coddou, Yan, Obsil, Huidobro-Toro, & Stojilkovic, 2011; Wang, et al., 2004). Cellular 

localization of the P2X7 receptor has yet to be clearly defined after TBI; therefore these 

studies will show, for the first time, the temporal pattern and cellular localization of 

P2X7 in the brain following TBI. 
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Figure 1: Western blot analysis of P2X7 receptor after TBI. Representative Western blots 
(top panel) of P2X7 in the cerebral cortex of mice following sham injury, TBI, or TBI + 50 mg/kg 
BBG.  Tissue was collected at 12h or 24h after TBI.  Blots were normalized to β-actin to control for 
equal protein loading between lanes.   Data are representative of six mice/group.  Densitometric 
analysis of Western blots (bottom panel) is presented as P2x7 expression following normalization 
to β-actin 

 

The expression of P2X7, the presumed cellular target of BBG action, was next assessed 

within the brain.   P2X7 was basally expressed within the cerebral cortex, as 

demonstrated by Western blotting; however, expression was not increased following 

TBI, as compared to sham-operated mice (Figure 1).   

 

 

Immunohistochemical analysis revealed that P2X7 strongly co-localized with the 

astrocytic endfoot marker, aquaporin-4 (AQP4) (Figure 2b)   whereas dual labeling 

was not observed with the microglial marker, CD11b (Figure 2c) or the astrocytic cell 

body marker, glial fibrillary acidic protein (GFAP) (Figure 2a).  Furthermore, no 

localization was observed between P2X7 and the neuron-specific marker, NeuN (data 

not shown).   Together, these data implicate astrocytes as a key mediator of the 

biological actions of P2X7 and as a possible cellular target of BBG after TBI. 
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Specific Aim 2:  To establish whether inhibition of P2X7 decreases cerebral 

edema following TBI. 

Hypothesis.  Antagonism of the purinergic receptor, P2X7, will reduce cerebral 

edema after TBI. 

Rationale.  ATP is generally contained to intracellular compartments and is not 

commonly found in the external milieu.  After injury, ATP is released into the external 

environment where it can act upon the low affinity purinergic receptor P2X7.  The P2X7 

receptor has been implicated in neuropathic pain and inflammatory responses 

throughout the body.  Upon P2X7 well known to open channels that are that are 

permeable to both mono and divalent cations, altering concentrations that can fluxes in 

water content.  Work by Nedergaard and colleagues showed that doses of 10mg/kg and 

50mg/kg of BBG, a specific P2X7 antagonist, showed improvements after spinal cord 

injury.  The proper dose and effect of BBG in the brain remains largely unexplored; 

therefore,    these studies will implicate P2x7 in edema development after TBI.  If 

successful, these studies will also identify a novel therapeutic use for brilliant blue G 

(BBG), a clinically- safe P2X7 antagonist, amendable to implementation on the 

battlefield (Wang, et al., 2004). 
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Figure 3:  Antagonism of P2X7 reduces cerebral 

edema after TBI.   

A single intravenous bolus of 50 mg/kg BBG provided 15 

minutes prior to TBI, significantly reduced the development 

of cerebral edema at 24h post-TBI, as measured by brain 

water content. Comparisons within each hemisphere 

between different treatments groups were done using a 

one-way ANOVA followed by Dunnett’s post-hoc test (* 

p<0.05, ** p<0.01, ***p<0.001 vs. the ipsilateral 

hemisphere in sham-operated mice).  No significant 

differences in cerebral edema were observed between 

groups in the contralateral hemisphere.  Data are 

represented as the mean ± SEM from 5-6 mice/group 

 

 Figure 4:  Dose determination of 
BBG for antagonism of P2X7 after 
TBI.   A single intravenous bolus of 50-100 
mg/kg BBG administered 0.5h after TBI 
significantly reduced cerebral edema at 24h 
post-TBI.  . Comparisons within each 
hemisphere between different treatments groups 
were done using a one-way ANOVA followed by 
Dunnett’s post-hoc test (* p<0.05, ** p<0.01, 
***p<0.001 vs. the ipsilateral hemisphere in 
sham-operated mice).  No significant differences 
in cerebral edema were observed between 
groups in the contralateral hemisphere.  Data 
are represented as the mean ± SEM from 5-6 
mice/group 
 

BBG reduces post-traumatic cerebral edema with an extended therapeutic window 
 

Brain water content, a sensitive measure of cerebral edema, was significantly increased 

within the ipsilateral cortex at 24h post-TBI (83.6 ± 

0.4% brain water content after TBI vs. 77.9 ± 0.2% in 

sham, p<0.001 vs. sham) (Figure 3).   A single, 

intravenous injection of 50 mg/kg BBG at 15 minutes 

prior to injury attenuated brain water content after TBI 

(80.6 ± 0.5%; p<0.01 vs. TBI) whereas administration 

of 25 mg/kg BBG did not significantly reduce edema 

(83.3% ± 0.3%; not significantly different from TBI).  

Notably, the ability of 100 mg/kg BBG to reduce edema 

was not significantly different from administration of 50 

mg/kg (81.0 ± 0.2%; p<0.001 vs. TBI), suggesting 50 mg/kg was the lowest efficacious dose 

to limit edemic development after TBI (Figure 4).   For all studies, brain water content 

within the contralateral (uninjured) cortices did not 

significantly differ between any of the treatment 

groups (data not shown).  Furthermore, administration 

of BBG alone (50 mg/kg, i.v., 15 minute pre-treatment) 

did not significantly change brain water content, as 

compared to placebo-treated, sham-operated mice 

(Figure 3), suggesting an injury-specific reduction in 

edema.   
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 Figure 5:  Determination of BBG time of 
treatment after TBI.   
Administration of a single intravenous bolus of 
50 mg/kg BBG reduced cerebral edema when 
administered 1h or 4h after injury.  This effect 
was lost if post-treatment was delayed beyond 
8h from the time of injury.  Comparisons within 
each hemisphere between different treatments 
groups were done using a one-way ANOVA 
followed by Dunnett’s post-hoc test (* p<0.05, 
** p<0.01, ***p<0.001 vs. the ipsilateral 
hemisphere in sham-operated mice).  No 
significant differences in cerebral edema were 
observed between groups in the contralateral 
hemisphere.  Data are represented as the mean 
± SEM from 5-6 mice/group 
 

The therapeutic window whereby BBG reduced edemic development was next 

established.   A 1h post-treatment with 50 mg/kg significantly reduce cerebral edema (81.3 

± 0.2%, p<0.05 vs. TBI) to a similar extent as pre-

treatment (Figure 5; see Figure 3 for comparison).  

Similarly, a 4h post-treatment effectively attenuated 

post-traumatic edema (81.4 ± 0.4%, p<0.05 vs. TBI, 

no significantly different from 1h post-treatment).  In 

contrast, 8h post-treatment with 50 mg/kg was 

ineffective at reducing edema, as compared to TBI 

(83.2% ± 0.2%), suggesting a 4h post-injury 

therapeutic window.   

We next determined whether prophylactic 

administration of BBG may reduce edema.  Oral 

administration of 25 mg/mL BBG via the drinking 

water for one week prior to injury effectively decreased brain edema after TBI (80.9 ± 0.2%, 

p<0.01 vs. TBI) (Figure 6).  In contrast, 10 mg/mL BBG via the drinking water did not 

significantly reduce edema, as compared to mice receiving water containing only placebo.  

As a whole, either prophylactic oral administration or post-injury intravenous 

administration of BBG effective attenuates brain edema after TBI. 

  

 

Figure 6:  Prophylactic treatment with BBG reduces cerebral edema after 
TBI.  Prophylactic treatment with BBG in the drinking water for 7 days reduced 
edema at 24h post-TBI at a concentration of 25 mg/ml but not 10mg/ml. 
Comparisons within each hemisphere between different treatments groups were done 
using a one-way ANOVA followed by Dunnett’s post-hoc test (* p<0.05, ** p<0.01, 
***p<0.001 vs. the ipsilateral hemisphere in sham-operated mice).  No significant 
differences in cerebral edema were observed between groups in the contralateral 
hemisphere.  Data are represented as the mean ± SEM from 5-6 mice/group 
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A 

 

 

B 

 

Figure 7:  Distribution of BBG after TBI.  (A) Photograph of representative mice following an intravenous administration 
of placebo (right) and a BBG (50 mg/kg; left).  Note the blue appearance in the skin, eyes, ears, paws and tail.  (B) BBG 
accumulates in the contused cortex after TBI.   Photographs of brains taken from a sham-operated mouse administered placebo 
(left panel), a mouse administered placebo at 0.5h after TBI (middle panel), or a mouse administered 50 mg/kg BBG via the tail 
vein at 0.5h post-TBI.   
 

Brain expression of P2X7 after TBI 

Peripheral administration of BBG reduced brain edema, although the potential tissue 

and cellular targets of BBG remained unclear.  Intravenous administration of 50 mg/kg BBG 

produced a transient deep blue color over the first 24h within the eyes, nose, ears, and paws 

(Figure 7a), demonstrating wide peripheral distribution throughout the circulatory system.  

No trace of blue color was observed by 72h post-administration.  Similarly, oral 

administration of BBG for one week via the drinking water also produced a faint blue hue in 

the paws and eyes, albeit to a far lesser extent, as compared to intravenous administration.  

Consistent with the observed blue appearance, serum levels of BBG reached 383 ± 33.3 µM 

and 1.73 ± 0.07 mM following intravenous administration of 50 mg/kg and 100 mg/kg, 

respectively.  Whether BBG acted peripherally or crossed the blood-brain barrier to directly 

affect the brain after TBI remained unclear.  Consistent with a potential direct effect, the 

brains of mice administered BBG appeared greyish-blue, with blue color observed within the 

cerebral vasculature and brain tissue.  Most notably, the contused cortex exhibited a distinct 

blue color (Figure 7b), suggesting BBG can enter the brain and preferentially accumulates 

at high levels around damaged tissue, presumably where the blood-brain barrier is 

disrupted. 
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 Figure 8: Brain water measurement of 
genetic inhibition of P2X7 after TBI.  
P2X7-/- mice exhibited a significant reduction in 
brain water content, as compared to wild-type 
mice, when assessed at 24h post-TBI. 
Comparisons within each hemisphere between 
different treatments groups were done using a 
one-way ANOVA followed by Dunnett’s post-hoc 
test (* p<0.05 vs. the ipsilateral hemisphere in 
sham-operated mice).  No significant differences 
in cerebral edema were observed between 
groups in the contralateral hemisphere. 

 

Figure 9: Genetic 
inhibition of P2X7 
attenuates cerebral edema 
after TBI as measured by 
MRI.  P2X7-/- mice displayed 
attenuated cerebral edema, as 
compared to wild-type mice, 
when assessed by MRI.  The top 
panels depict a representative 
wild-type and a P2X7-/- mouse 
imaged at 24h post-TBI.   
Bottom panels represent the 
mean edemic volume of mice 
imaged by MRI.   Data are 
represented as the mean ± SEM 
from six mice/group and were 
analyzed using a t-test (p<0.01 
vs. wild-type). 
  

 P2X7-/- mice exhibit reduced cerebral edema after TBI 

BBG is a highly selective inhibitor of P2X7; however, pharmacological agents often 

exhibit “off-target” or non-specific effects.   To validate P2X7 as a potential therapeutic 

target to reduce brain edema, we next performed studies in P2X7-/- mice.  Consistent with 

data collected after BBG administration, P2X7-/- mice exhibited a significant reduction in 

brain water content, as compared to wild-type mice, 

following TBI (81.0 ± 0.4% in P2X7-/- vs. 83.7 ± 0.3% 

in wild-type; p<0.01) (Figure 8).  These findings 

were supported by the measurement of edemic 

volume in living mice using MRI.  P2X7-/- mice 

exhibited a 36% reduced in edemic volume after TBI, as 

compared to wild-type mice (14.4 ± 0.7 mm3 in wild-type 

mice vs. 9.2 ± 1.5 mm3 in P2X7-/- mice; p<0.01 vs. wild-

type) (Figure 9).   Brain water content was not 

significantly different either in sham-operated mice (Figure 9) or in the contralateral 

hemisphere of wild-type or P2X7-/- mice. 
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Figure 10: Western blot analysis of 
IL-1β after inhibition of P2X7 .   A 
single intravenous bolus of 50-100 
mg/kg BBG administered 0.5h after TBI 
significantly reduced peri-contusional 
IL-1β expression, as assessed by (B) EIA 
and by (A) Western blotting at 12h or 
24h post-injury.   In panel A,data are 
represented as IL-1β expression as a % of 
sham expression levels.    In panel B, 
data was normalized to β-actin to control 
for equal protein loading between lanes.  
Data are representative of six 
mice/group.  Data were analyzed with 
One-Way ANOVA followed by Dunnett’s 
post-hoc test (* p<0.05, ** p<0.01 vs. 
sham operated mice).  
 

Specific Aim 3:  To determine whether P2x7 inhibition reduces IL1-1β 

production and release following TBI. 

Hypothesis.  Inhibition of the P2X7 receptor will decrease the production of IL-1β 

following TBI 

Rationale.  The brain has long been thought to be immuno-privileged.  Recent work by 

numerous laboratories has shown that the innate immune system functions similarly if not 

identically in the brain as in the periphery.  The purinergic receptor P2X7, originally 

described in cells of hematopoetic origin to include microglia, is known to not only allow 

the bidirectional flow of cations but to have an important role in the release of 

proinflammatory cytokines such as IL-1β.  IL-1β is an important mediator in chronic pain, 

inflammation and neurodegeneration and can affect neuronal cell death after injuries such 

as TBI.   P2X7 activity has been reported to have a role in the pathology of disease processes 

such as depression by regulating the release of the proinflammatory cytokine IL-1β.  Ito et 

al (1996) describes a positive correlation between Il-1β in the CSF, cerebral edema and 

negative outcomes associated with TBI.  This provides the theoretical link between the 

immune system and neurologic injuries providing the foundation for the studies of this aim.  

Therefore, these studies will implicate P2X7 activation in the production and release of the 

pro- inflammatory cytokine IL-1β after TBI, suggesting an innate immune component of the 

inflammatory pathway of TBI and cerebral edema 

(Skaper, et al., 2010; 

Wang, et al., 2004). 
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Figure 11: BBG attenuates glial 
activation as measured by GFAP 
expression.   Representative Western 
blot (top panel) of cortical GFAP 
expression taken at 12h or24h after 
sham injury, TBI, or TBI + 50 mg/kg 
BBG.  Data (mean ± SEM) are 
representative of six mice/group from 
three independent experiments 
(n=3/group in each experiment) and 
are expressed as % change vs. sham.  
Data were analyzed by One-Way 
ANOVA followed by Dunnett’s post-
hoc test (* p<0.05, ** p<0.01 vs. sham 
operated mice). 
 

 

 

Figure 12: Western blot analysis of AQP4 
expression after P2X7 antagonism. 
Representative Western blot (top panel) of 
AQP4 in the cerebral cortex of mice at 12h 
following sham injury, TBI, or TBI + 50 mg/kg 
BBG.  Densitometric analysis of Western blots 
(bottom panels) is presented as AQP4 
expression following normalization to β-actin, 
which was used to control for equal protein 
loading.  Data (mean ± SEM) are representative 
of six mice/group from three independent 
experiments (n=3/group in each experiment) 
and are expressed as % change vs. sham.  Data 
were analyzed by One-Way ANOVA followed by 
Dunnett’s post-hoc test (* p<0.05, ** p<0.01 vs. 
sham operated mice). 
 

P2X7 mediates glial reactivity after TBI 

IL-1β induces reactive astrogliosis after TBI; therefore, the ability of BBG to attenuate 

the expression of GFAP, a hallmark of gliosis, was next assessed.  GFAP expression was 

significantly increased by 299.7 ± 72.2% within the peri-contusional cortex (p<0.05 vs. 

sham) and 222.0 ± 28.6% (p<0.01 vs. sham) of sham-operated mice at 12h and 24h post-

TBI, respectively (Figure 11).  Post-treatment with 50 

mg/kg BBG reduced GFAP expression to 216.1 ± 88.6% 

(not significantly different from either sham or TBI) and 

145.3 ± 15.2% (p<0.05 vs. TBI, not significantly different 

from sham) of expression levels in sham-operated mice at 

12h and 24h, respectively.   

Consistent with the inhibitory effect of BBG on post-

traumatic cerebral edema and glial reactivity, BBG 

attenuated the expression of the astrocytic water channel, 

AQP4, after TBI.  AQP4 protein expression was increased 

within the pericontusional 

context at 12h (1.7 ± 0.1 fold 

increase; p<0.01 vs. sham) 

and at 24h (1.5 ± 0.1 fold 

increase; p<0.05 vs. sham) 

after TBI.  Intravenous administration of 50 mg/kg BBG  at 0.5h post-injury attenuated the 
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TBI-induced increases in AQP4 expression (1.3 ± 0.2 and 1.1 ± 0.1 fold increase vs. sham at 

12h and 24h, respectively; p<0.05 vs. TBI, not significant different from sham) (Figure 

12).  

Specific Aim 4:  To determine whether inhibition of P2X7 improves neurologic outcomes 

following TBI 

Hypothesis.  Inhibition of the P2X7 receptor after TBI will improve neurologic outcomes 

Rationale.  The brain has long been thought to be immuno-privileged.  Recent work by 

numerous laboratories has shown that the innate immune system functions similarly if not 

identically in the brain as in the periphery.  The purinergic receptor P2X7, originally 

described in cells of hematopoetic origin to include microglia, is known to not only allow 

the bidirectional flow of cations but to have an important role in the release of 

proinflammatory cytokines such as IL-1β.  IL-1β is an important mediator in chronic pain, 

inflammation and neurodegeneration and can affect neuronal cell death after injuries such 

as TBI.   P2X7 activity has been reported to have a role in the pathology of disease processes 

such as depression by regulating the release of the proinflammatory cytokine IL-1β.  P2X7 

inhibition has been reported to improve outcomes after both spinal cord injury and 

stroke(Arbeloa, Perez-Samartin, Gottlieb, & Matute, 2011; Skaper, et al., 2010; Wang, et al., 

2004).  Therefore, we propose that these studies will show for the first time that inhibition 

of P2X7 will improve neurobehavioral outcomes after TBI. 

BBG improves neurobehavioral outcomes after TBI  

Depression and anxiety disorders are common psychiatric co-morbidities after a TBI.   

Thus, the ability of BBG to reduce neuropsychiatric dysfunction was next explored.   A 

significant increase in open-field hyperlocomotion (total number of squares entered) was 

observed following TBI (p<0.01 vs. sham) (Figure 13).  Administration of 50 mg/kg BBG 
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 Figure 13: BBG improves open field 
hyperlocomotion after TBI. Post-injury 
administration of 50 mg/kg BBG significantly 
attenuated post-traumatic hyperlocomotion 
following TBI in the open field test and (B) 
time to first immobility in the forced swim test, 
a sensitive estimate of depressive like behavior, 
as compared to placebo-treated mice. Data are 
expressed as the mean ± SEM from 10-12 
mice/group and were compared by One-Way 
ANOVA followed by Dunnett’s post-hoc test (* 
p<0.05, ** p<0.01 vs. sham operated mice). 
 

 Figure 14: BBG improves 
depressive effects after TBI. Post-
injury administration of 50 mg/kg BBG 
significantly increased time to first 
immobility in the forced swim test, a 
sensitive estimate of depressive like 
behavior, as compared to placebo-
treated mice. Data are expressed as the 
mean ± SEM from 10-12 mice/group and 
were compared by One-Way ANOVA 
followed by Dunnett’s post-hoc test (* 
p<0.05, ** p<0.01 vs. sham operated 
mice). 
 

partially resolved the increase in post-traumatic 

hyperlocomotion by ~50% (p<0.05 vs. sham and TBI).  

In contrast, BBG administration had no significant 

effect on basal activity in sham-operated mice.    

Following TBI, mice exhibited a reduced time to 

latency to develop behavioral despair, a measure of 

depression, using the forced swim test.  Sham-

operated mice displayed a latency of 70.8 ± 8.3s 

whereas TBI reduced this time to 44.5 ± 7.4s (p<0.05 

vs. sham).  Post-injury administration of 50 mg/kg BBG significantly increased the latency 

time to 85.4 ± 5.5s (p<0.01 vs. TBI, not significantly 

different from sham).  (Figure 14).  Notably, BBG 

administration did not significantly change the 

latency time in sham-operated mice, suggesting an 

injury specific effect. 

DISCUSSION 

Preventative measures reduce the incidence and/or 

severity of TBI, yet one-third of hospitalized TBI patients 

die from injuries that are secondary to the initial trauma.  

The development of post-traumatic edema promotes clinical deterioration and worsens 

long-term outcomes, at least in part, by limiting cerebral perfusion, by increasing brain 

herniation, and by increasing the manifestation of neuropsychiatric impairments such as 

headaches, anxiety, depression, sleep disturbances, and appetite loss (H. S. Levin, et al., 

1991; Rogers & Read, 2007; Saul & Ducker, 1982a; Whelan-Goodinson, Ponsford, 
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Johnston, & Grant, 2009).  Thus, elucidation of the cellular mechanisms of neurological 

injury may permit the development of efficacious therapeutics to improve patient outcomes 

after TBI. 

In the present study, genetic (P2X7-/-) or pharmacological (BBG) inhibition of P2X7 

reduced secondary brain injury and improved functional outcomes after a moderate TBI in 

mice.  BBG, a FDA-approved, water soluble, structural and functional analogue of FD&C 

blue dye No. 1 (also called Brilliant blue FCF or E133), is a widely used food additive and 

coloring agent that exhibits no toxicity at doses up to 1g/kg/d in humans (Register, 2006).  

Herein, BBG reduced peri-contusional IL-1β, limited AQP4 expression, attenuated edemic 

development, and improved neurobehavioral outcomes.  These beneficial effects were 

observed whether BBG was intravenously administered as a single bolus up to four hours 

after injury or chronically administered via the drinking water.   Thus, clinically safe doses 

of BBG may reduce neurological injury after TBI, either via a clinically-implementable post-

injury temporal window or via prophylactic administration. 

Cellular edema is the predominant form of edema during the acute and sub-acute phase 

after TBI (Bullock, Maxwell, Graham, Teasdale, & Adams, 1991; J. Ito, et al., 1996).  

Astrocytic swelling, a characteristic feature of cellular edema, commenced within the first 

hours after head trauma in humans (Bullock, et al., 1991; J. Ito, et al., 1996) and glial 

activation temporally paralleled edemic development in pre-clinical models of TBI 

(Dietrich, et al., 1999; Hinkle, et al., 1997).  Furthermore, increased serum and CSF levels of 

the activated astrocyte markers, S100β and GFAP, directly correlated with patient outcomes 

after TBI (Hayakata, et al., 2004; Pelinka, Kroepfl, Leixnering, et al., 2004; Pelinka, 

Kroepfl, Schmidhammer, et al., 2004), supporting a possible role for astrocytes in the 

genesis of secondary neurovascular injury; however, controversy remains as to whether 
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astrocytes exert beneficial and/or detrimental functions after brain injury (Laird, Vender, & 

Dhandapani, 2008).  Along these lines, astrocytes are the predominant cell type within the 

neurovascular unit, providing trophic support for neurons, regulating cerebral blood flow, 

and maintaining ionic and neurotransmitter homeostasis under physiological conditions.  

Conversely, astrocytes may generate cerebral innate immune responses after injury or 

infection, releasing pro-inflammatory mediators (Farina, et al., 2007).   

AQP4, a bidirectional water channel expressed in the perivascular end feet of astrocytes, 

mediated glial swelling in vitro and was associated with the development of cellular edema 

after TBI in humans and rodents (Badaut, et al., 2011; Hu, et al., 2005).  Although causative 

studies remain unperformed after neurotrauma, attenuated swelling of pericapillary 

astrocytic foot processes, decreased cellular edema,  and reduced mortality were observed in 

AQP4-deficient mice after ischemic stroke or acute water intoxication (Manley, et al., 2000).  

Additionally, genetic deletion of AQP4 attenuated astrocytic migration and glial scar 

formation, implicating AQP4 as a potential therapeutic target to restrict deleterious 

astrocytic responses to injury (Saadoun, et al., 2005).  Unfortunately, clinically-efficacious 

drugs to inhibit AQP4 expression/function do not currently exist, at least in part, due to the 

limited understanding of AQP4 regulation at the cellular level.  Notably, we and others 

recently identified IL-1β as a positive regulator of AQP4 expression in cultured astrocytes 

and in the mouse cerebral cortex (H. Ito, et al., 2006; Laird, et al., 2010).  IL-1β expression 

is rapidly increased following brain insults and functionally promotes reactive astrogliosis 

after penetrating brain injury (Lin, et al., 2006).   Furthermore, elevated concentrations of 

IL-1β in the CSF of head trauma patients correlated with an unfavorable clinical outcome 

(Chiaretti, et al., 2005; Hayakata, et al., 2004).  Based on these findings, we hypothesized 
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that strategies which reduce post-traumatic IL-1β may effectively limit neurovascular injury 

after TBI.    

IL-1β is synthesized as a biologically inactive 31-kDa precursor protein that requires 

proteolytic cleavage to generate the mature, biologically-active 17.5 kDa protein (Perregaux 

& Gabel, 1998).  Expression of caspase-1 (also called interleukin-1 converting enzyme; ICE), 

the principal enzyme involved in the processing of pro-IL-1β into the mature IL-1β form, 

was upregulated within the rat forebrain after fluid percussion injury (Yakovlev, et al., 

1997).  Activated caspase-1 was strongly increased in brain tissue resected from both 

pediatric and adult TBI patients whereas pro-caspase-1 exhibited a decrease in expression 

as compared to control patients (Clark, et al., 1999; Satchell, et al., 2005).  Furthermore,  

activated caspase-1 was elevated within the CSF of pediatric TBI patients, an observation 

that directly correlated with a concomitant increase in IL-1β and reduction in pro-IL-1β in 

these same patients (Satchell, et al., 2005).  Functionally, genetic or pharmacological 

inhibition of caspase-1 reduced secondary tissue damage after experimental TBI in mice 

(Fink, et al., 1999).  Taken together, these findings suggest clinical significance for caspase-1 

activation after TBI and imply therapeutic targeting of caspase-1 pathway may improve 

outcomes.   

The precise cellular mechanisms underlying caspase-1 activation remain poorly defined; 

however, repetitive or prolonged exposure to high concentrations of ATP increased the 

activation and the externalization of caspase-1 and promoted the formation of a large 

membrane pore required for the extracellular release of IL-1β (Laliberte, Eggler, & Gabel, 

1999; Mariathasan, et al., 2006).  ATP, an intracellular energy source under physiological 

conditions, is rapidly released into the extracellular space after traumatic or ischemic 
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injuries (Khakh & North, 2006; Latini, Corsi, Pedata, & Pepeu, 1996; Peng, et al., 2009; 

Ralevic & Burnstock, 1998).  Although the functional significance remains poorly defined, 

the release of extracellular ATP promoted secondary tissue damage after traumatic spinal 

cord injury (Peng, et al., 2009).  Furthermore, elevated levels of  ATP metabolites within 

the CSF of a head trauma patient correlated with edemic development and elevated ICP 

(Cristofori, et al., 2005), implying a detrimental role for purinergic signaling after 

neurological injury.   

The biological actions of ATP are mediated, at least in part, by activation of either 

metabotropic P2Y receptors or ionotropic P2X receptors (Ralevic & Burnstock, 1998).  

Among the purine receptor family members, P2X7 is a low-affinity receptor that 

preferentially responds to sustained elevations in ATP such as those which occurs after 

trauma, suggesting P2X7 possesses the optimal biophysical properties for mediating the 

detrimental actions of ATP after a brain injury.  Herein, P2X7 specifically co-localized 

within astrocytic end feet within the brain, directly overlapping with the expression of 

AQP4.  Consistent with a report showing extracellular ATP induced stellation and increased 

GFAP expression in astrocyte cultures (Neary, Baker, Jorgensen, & Norenberg, 1994), 

clinically-achievable doses of BBG decreased IL-1β production, reduced astrocytic 

activation, as assessed by GFAP expression, attenuated AQP4 expression, and limited 

cerebral edema after TBI in mice.  Given the importance of cerebral edema and elevated 

ICP in patient mortality and long-term morbidity after TBI, P2X7 antagonism may improve 

acute clinical outcomes following TBI. 

Increased rates of depression, aggression, and anxiety are observed over the first year in 

up to 51% of TBI survivors (Fann, et al., 2004); yet, a recent meta-analysis of 223 pre-

clinical trials failed to identify any single intervention that significantly improved these 
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neurological outcomes after TBI (Wheaton, Mathias, & Vink, 2011).  Interestingly, patients 

with idiopathic intracranial hypertension, a neurological disorder characterized by non-

traumatic elevations in ICP, exhibited higher rates of  developing depression and anxiety, as 

compared to matched control patients (Kleinschmidt, Digre, & Hanover, 2000).  These 

clinical findings suggested post-traumatic elevations in ICP could directly induce 

psychiatric co-morbidities.  IL-1β, which clinically correlates with elevated ICP after TBI 

(Chiaretti, et al., 2005; Holmin & Hojeberg, 2004; Shiozaki, et al., 2005),  is implicated in 

the pathophysiology of depressive and anxiety (Koo & Duman, 2008, 2009a, 2009b; 

Norman, et al., 2010). Thus, the production of IL-1β may provide a key mechanistic bridge 

between acute traumatic injury and long-term neurological outcomes.  Consistent with this 

notion, post-injury administration of clinically-relevant doses of BBG that reduced IL-1β 

expression and limited post-traumatic edema significantly attenuated the manifestation of 

depressive-like and anxious behavior after TBI.  This finding is in line with a report showing 

P2X7-/- mice exhibited an anti-depressive-like profile and increased responsiveness to 

antidepressant drugs under basal conditions, as compared to wild-type mice (Basso, et al., 

2009).  The novel findings presented herein provide support for the notion that acute 

neuroinflammatory mediators contribute to elevations in ICP as well as influence the 

development of subsequent neurobehavioral outcomes after TBI.    

Several caveats of this study warrant further consideration.  Although considered a 

highly selective P2X7 antagonist, BBG also can inhibit both P2X2 and P2X5, albeit less 

potently than at P2X7 (Jiang, et al., 2000).  Despite our data showing P2X7-/- mice exhibit 

similar responses to BBG-treated mice, we cannot exclude the possibility that off-target 

effects on receptors other than P2X7 mediated the beneficial actions of BBG.   Similarly, it 
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remains unclear whether BBG penetrates the blood-brain barrier.  We observed a 

significant accumulation of BBG within the tissue adjacent to the contusion, suggesting 

BBG could possibly act at the level of the CNS.  Nonetheless, we cannot eliminate the 

possibility that BBG may also act on peripheral immune cells that express P2X7, produce 

pro-inflammatory mediators, and infiltrate into brain tissue after TBI.  Future work by our 

group using cell-type specific knockout of P2X7 (e.g. astrocyte-specific P2X7 knockout) will 

attempt to address this issue in detail. 

In conclusion, this data suggests a novel, causative role for the low-affinity ATP receptor, 

P2X7, in the development of cerebral edema and neurological injury after TBI.  These 

findings also identify BBG, a drug that is well-tolerated in humans, in the treatment of 

cerebral edema and neurological deterioration following TBI using a clinically-feasible 

therapeutic window.   Given the dearth of medical treatment options to limit elevated ICP 

and reduce co-morbid psychiatric deficits following head trauma, further exploration of 

P2X7 may be warranted. 
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Recruitment and Retention Aspect  Number 
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*the descripency in numbers represents mice that died during procedures  
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